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A few decades ago, the significance of Moffatt vortices was demonstrated by estab-
lishing their existence in various flows. Wedge and cusp regions and their axisymmetric
counterparts were preferred to conical regions because the associated analyses
were simpler. The lowest even and odd modes were always dominant and the
streamline patterns of higher modes were assumed to be similarly simple, especially
as their minute strength caused computational difficulties. Here, armed with far more
computer power, we return to the vortices’ canonical structure, with our principal
focus on the region exterior to two cones with common axis and vertex. Many
interesting features are revealed, the most unexpected being the structure of the
third (second odd in a symmetric geometry) mode. The two-cone geometry allows
consideration of asymmetric regions, for the first time. Comparisons are made with
the well-known wedge and single-cone results and numerical corrections made to the
latter. In all cases, eigenvalue plots play a valuable role in guiding the discussion.

1. Introduction
Ever since the paper by Dean & Montagnon (1949) and the studies by Moffatt

(1964), Moffatt & Duffy (1980), and Liu & Joseph (1978), there has been considerable
interest in the low-Reynolds-number motion in wedges and cones, showing the
existence of a sequence of counter-rotating eddies into the vertex. The wedge and
cone geometries admit separation-of-variables analysis of the Stokes flow equations.
Solutions of this type, however, are not just of fundamental interest. Davis (1989)
models the thermocapillary flow in the floating zone method of crystal growth as a
Stokes problem in the corner between the solid crystal and the liquid melt with various
surface stress conditions. A similar analysis for the wedge geometry was reported by
Kuhlmann, Nienhüser & Rath (1999) for a constant thermocapillary stress. Stokes
solutions have also been used to predict the morphology of soft moulded objects
released from their matrix in wedge (Betelú et al. 1996) and cone (Weidman &
Calmidi 1999) geometries.

In the present study, Stokes flow in a geometry distinctly different from the wedge
or conical trench is investigated. Motivation is given in figure 1 which depicts two low-
Reynolds-number stagnation flows. Figure 1(a) shows a two-dimensional stagnation
flow impinging normally on a cylinder placed on a horizontal wall; the separated
flow over the cylinder results in a nested vortex structure in the cusped regions
between the cylinder and the wall. Though the cylinder is curved, a simple model for
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(a) Cylinder (b) Sphere

(c) Wedge (d) Cone

Figure 1. Schematic diagrams of streamline patterns for (a) planar stagnation-point flow
impinging on a cylinder resting on a plane and (b) axisymmetric stagnation-point flow
impinging on a sphere resting on a plane. Model geometries to study the nested vorticies
in (a) and (b) are respectively the flow (c) between intersecting planes and the flow (d) between
intersecting cones.

the corner flow is given by Moffatt’s (1964) sequence of eddies formed in a planar
wedge composed of intersecting flat planes shown in figure 1(c). Figure 1(b) shows the
nested toroidal vortex structure reported by Davis & O’Neill (1977a) for axisymmetric
Stokes stagnation flow impinging normally on a sphere placed on a horizontal wall.
By analogy with the cylinder problem, a simple model of the flow in the axisymmetric
cusp region is the corner flow in the axisymmetric wedge bounded by a cone and the
horizontal plane it touches, as shown in figure 1(d). Referring to figure 3 below, it
is clear that the horizontal wall in figure 1(d) is the particular case, θ2 = π/2, of the
second of two coaxial cones having a common vertex, with semi-vertex polar angles
θ1 and θ2.

Pursuant to this study we found that the separatrices between nested eddies are
never conical above mode number two. This motivates a further investigation of the
shape of separatrices between nested eddies in the simpler wedge geometry where
non-trivial boundaries between the nested eddies are also found at elevated mode
number. Another aspect of the work reported here results from testing our numerical
code in solving the eigenvalue equation derived by Liu & Joseph (1978) for Stokes
flow in a conical trench of apex angle 2θ0; we discovered that the Liu & Joseph
computations are in error, and their reported critical angle for the disappearance of
nested vortices is different from the value 80.9◦ reported earlier by Wakiya (1976).
Corrections to their published eigenvalues for selected values of θ0 and a sample
streamline plot are provided in this paper.

The presentation is organized as follows. Essential for understanding our results,
we briefly review in § 2 the findings of Moffatt (1964) for the classic eigenvalue
problem and introduce our notation for even and odd eigenvalues. Derivation of the
eigenvalue problem for flow between concentric cones is given in § 3. New results
for symmetric flows and their connection to the classic wedge problem given in § 3.1
are followed by a presentation of results for asymmetric flows in § 3.2. The reduction
to the single-cone problem and computations correcting the results of Liu & Joseph
(1978) are given in § 4. Concluding remarks are given in § 5.
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Figure 2. Eigenvalue distribution for the lowest even and odd modes for the wedge problem
showing the four distinct regions (i), (ii), (iii) and (iv) that appear.

2. Review of the Moffatt problem
It will be shown that similarities exist between vortex structures situated between

cones symmetrically opening about the equator, and those situated between inter-
secting planes. Following Moffatt (1964) we denote by 2θ0 the included angle between
intersecting planes and define �θ = θ2 − θ1 to be the ‘latitude’ angle between cones.
For intersecting planes, fluid fills the entire spatial domain when 2θ0 = 2π and so the
available range of wedge openings is 0< 2θ0 < 2π. For the double-cone configuration,
fluid fills the entire spatial domain when �θ = π and hence the available range of
included angles in this situation is 0 <�θ < π.

Moffatt (1964) showed that the eigenvalues for Stokes solutions ψ = Re[rλ+1f (θ)]
describing planar flow in a wedge, provided Re(λ) > 0, must be computed from
separate eigenvalue equations, namely

sin(2λθ0) ± λ sin 2θ0 = 0 (λ �= 1) (1)

where the positive sign is for odd modes and the negative sign for even modes.
Figure 2 shows the distribution of the computed real parts of 2θ0λ

± for odd and
even modes, wherein the labelling sequence ± is used in accordance with (1) and the
range of wedge angles extends to the ‘knife edge’ 2θ0 = 360◦. The canonical form of
equation (1) is sin z ± z(sin 2θ0/2θ0) = 0 where z = 2λθ0. As θ0 → 0, this equation gives

sin z ± z = 0 (2)

and the limiting values of 2λθ0, listed for example by Davis & O’Neill (1977b), are
plotted as solid circles on the vertical axis in figure 2. Note that the θ0 = 0 ordinate
values are approached horizontally because sin 2θ0/2θ0 = 1 − O(θ2

0 ).
The four regions (i)–(iv) discerned in figure 2 constitute different flow structures in

the wedge: (i) nested vortices, (ii) first region void of vortices, (iii) double vortices
pinned to the origin, and (iv) a second region void of vortices. These regions owe their
existence to that of real eigenvalues on either side of 180◦ and as 360◦ is approached.
Bifurcations between pairs of real and complex-conjugate eigenvalues are evident
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Figure 3. Spherical coordinate system (r, θ ) showing cone boundaries θ1 and θ2, the included
angle �θ between cones and the angle θb bisecting the fluid region between cones.

and, if the disallowed solution, λ= λ0 = 1, of sin(2λθ0) − λ sin 2θ0 = 0 is included, the
eigenvalues of the two equations in (1) coincide at 180◦, where the curves cross, and
at 360◦. Here, and in what follows, we label in ascending order the real solutions of
each equation in region (ii) on the left (lower) side of 180◦. Evidently, the pairings
of complex-conjugate eigenvalues in region (iii) differ from those in region (i). For
example, the curve labelled Re(λ+

1 , λ+
2 ) in (i) bifurcates into λ+

1 , which remains real
through to 360◦, and into λ+

2 , which crosses λ−
1 at 180◦ and subsequently joins λ+

3

on the path labelled Re(λ+
2 , λ+

3 ) across region (iii) before becoming real in region
(iv). Similar comments apply to the curve labelled Re(λ−

1 , λ−
2 ) in (i) and the ensuing

‘change of partners’ structure is established. Remarkably, the eigenplot for two cones
symmetric about the equator yields an eigenvalue structure very similar to regions
(i) and (ii) in figure 2, and the associated streamline plots presented in § 3.1 exhibit
similar features to those of the wedge.

3. The double-cone eigenvalue problem
Axisymmetric incompressible flow with zero swirl velocity is assumed. The fluid

density and kinematic viscosity are constant. Spherical polar coordinates (r, θ) are
employed and the fluid is located between two concentric cones with semivertex angles
θ1 and θ2(>θ1), as sketched in figure 3, which also shows the opening angle �θ and
its bisector θb. Velocity components along the direction of the unit vectors (er , eθ ) are
denoted by (u, v), respectively. For the divergence-free flow, a Stokes streamfunction
Ψ (r, θ) exists and is related to the velocity components according to

u =
1

r2 sin θ

∂Ψ

∂θ
, v = − 1

r sin θ

∂Ψ

∂r
. (3)
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For Stokes flow the fluid motion is governed by the fourth-order equation

L2
−1Ψ =

[
∂2

∂r2
+

1 − ξ 2

r2

∂2

∂ξ 2

]2

Ψ =0, (4)

where L−1 denotes the Stokes operator and ξ = cos θ . Liu & Joseph (1978) have
shown that explicit eigenfunctions for this problem are readily obtained by separating
variables according to Ψ (r, θ) = Re[rµ+3/2fµ(ξ )], but it is simpler if one anticipates

the r2 sin2 θ factor in Ψ by writing

Ψ (r, θ) = Re
[
rµ+3/2(1 − ξ 2)Fµ(ξ )

]
, (5)

where Re(µ) > 1/2. Then Fµ is easily determined by successively solving the equations

d2

dξ 2
[(1 − ξ 2)Eµ] +

(
µ − 1

2

)(
µ − 3

2

)
Eµ = 0,

d2

dξ 2
[(1 − ξ 2)Fµ] +

(
µ + 1

2

) (
µ + 3

2

)
Fµ = Eµ,

(6)
to obtain the general solution, for µ �= 3

2
,

Fµ(ξ ) = AP ′
µ+1/2(ξ ) + B P ′

µ−3/2(ξ ) + C Q′
µ+1/2(ξ ) + D Q′

µ−3/2(ξ ) (7)

where a prime denotes differentiation of a Legendre function. The use of µ instead
of the more obvious k + 1

2
is primarily for easy comparison with the results of Liu &

Joseph (1978), but turns out to be the optimal choice for discussing the limit �θ → 0.
Impermeable and no-slip boundary conditions apply at each solid surface θ = θ1, θ2

bounding the fluid. Thus, according to (3) and (5)

Fµ(ξ1) = Fµ(ξ2) = 0, F ′
µ(ξ1) = F ′

µ(ξ2) = 0 (8)

where ξ1 = cos θ1 and ξ2 = cos θ2. The four homogeneous boundary conditions give
rise to the eigenvalue problem determining µ in the first quadrant of the complex
plane, namely ∣∣∣∣∣∣∣∣∣∣

P ′
µ+1/2(ξ1) P ′

µ−3/2(ξ1) Q′
µ+1/2(ξ1) Q′

µ−3/2(ξ1)

P ′
µ+1/2(ξ2) P ′

µ−3/2(ξ2) Q′
µ+1/2(ξ2) Q′

µ−3/2(ξ2)

P ′′
µ+1/2(ξ1) P ′′

µ−3/2(ξ1) Q′′
µ+1/2(ξ1) Q′′

µ−3/2(ξ1)

P ′′
µ+1/2(ξ2) P ′′

µ−3/2(ξ2) Q′′
µ+1/2(ξ2) Q′′

µ−3/2(ξ2)

∣∣∣∣∣∣∣∣∣∣
= 0. (9)

For each mode µn(n= 1, 2, 3 . . .), the radial and polar velocities computed from (3)
are

un(r, ξ ) = Re
{

−rµn−1/2[(1 − ξ 2)Fµn
]′}, (10a)

vn(r, ξ ) = (1 − ξ 2)1/2Re
[
−(µn + 3/2)rµn−1/2Fµn

(ξ )
]
. (10b)

Complex roots of equation (9) were found using the modified secant method in
Mathematica (Wolfram 1991). In order to generate the eigenvalue distributions, an
outer loop stepped θ2 keeping θ1 constant, while an inner loop changed the search
window towards higher eigenvalues. In spite of the advancing window, the search
often ended at a previously calculated eigenvalue. To prevent repetition, a table of
eigenvalues was maintained, and successively computed eigenvalues were added to
the table if found to be new. Furthermore, to filter out spurious eigenvalues, each new
eigenvalue was resubstituted in equation (9) and accepted only when its right-hand
side was within an acceptable tolerance, typically 10−3.
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3.1. Symmetric flow region

The particular case θ1 = (π−�θ)/2, θ2 = (π+�θ)/2 has a fluid region that is symmetric
about the plane θ = π/2, that is ξ = 0. The relations

P ′
ν(−ξ ) = − cos νπP ′

ν(ξ ) +
2

π
sin νπQ′

ν(ξ ),

Q′
ν(−ξ ) = cos νπQ′

ν(ξ ) +
π

2
sin νπP ′

ν(ξ ),

(Gradshteyn & Ryzhik 1994, section 8.737) imply that

Gν(ξ ) = cos
νπ

2
Q′

ν(ξ ) +
π

2
sin

νπ

2
P ′

ν(ξ ) (11)

is an even function of ξ while

gν(ξ ) = sin
νπ

2
Q′

ν(ξ ) − π

2
cos

νπ

2
P ′

ν(ξ ) (12)

is an odd function of ξ . Thus

Fµ(ξ ) = AGµ+1/2(ξ ) + B Gµ−3/2(ξ ) (13)

is a symmetric solution provided∣∣∣∣∣∣
Gµ+1/2(ξ0) Gµ−3/2(ξ0)

d

dξ
Gµ+1/2(ξ0)

d

dξ
Gµ−3/2(ξ0)

∣∣∣∣∣∣ = 0, (14)

where ξ0 = sin(�θ/2). Similarly,

Fµ(ξ ) = C gµ+1/2(ξ ) + D gµ−3/2(ξ ) (15)

is an antisymmetric solution provided∣∣∣∣∣∣
gµ+1/2(ξ0) gµ−3/2(ξ0)

d

dξ
gµ+1/2(ξ0)

d

dξ
gµ−3/2(ξ0)

∣∣∣∣∣∣ =0. (16)

Equations (14) and (16) can be deduced from (9) by writing the latter in terms of Gν

and gν (ν = µ + 1/2, µ − 3/2) and exploiting the even and odd properties to obtain a
product of two 2 × 2 determinants when ξ2 = −ξ1.

Careful computations of (14) and (16) established the bifurcating structure of the
‘even’ and ‘odd’ eigenvalues presented on the right-hand side of figure 4. The shape of
the curves at lower angles, �θ , and in particular their limit points as �θ goes to zero,
indicated that eigenvalues of µ�θ should be plotted, corresponding to 2λθ0 in figure 2.
However, since P ′

ν(ξ ) and Q′
ν(ξ ) become very large at large values of ν as ξ → 0 and

1, respectively, accurate evaluation of the Legendre functions becomes difficult as
�θ → 0. The situation was rescued by noting that the evident monotonic dependence
on angle allows the curves to be completed using relaxed linear extrapolation as
�θ → 0, shown by the dashed lines in figure 4.

The combined evolution, which gives Re(µ)�θ as a function of the opening angle
�θ , shows only two regions: the primary region (i) of nested vortices at low values
of �θ and region (ii) of no vortices. Though the crossover points occur at less than
180◦, region (iii) never appears. The labelling is as in figure 2, with µ instead of λ.
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(i) and (ii) that appear.

It may be deduced from the asymptotic forms for P ′
ν , Q′

ν (Gradshteyn & Ryzhik,
section 8.721) that the large eigenvalues coincide asymptotically with those of

sin µ�θ ± µ sin �θ = 0, (17)

which indicates ultimate agreement with (1) and hence the wedge geometry as �θ → 0.
Consequently, the extrapolated curves in region (i) also terminate at the limit points
given by equation (2) with z = µ�θ and marked by the filled circles on the vertical
axis in figure 4.

Figure 5 displays, for �θ = 60◦, the nested vortices in the first three modes of
region (i), namely (+1,+2), (−1,−2) and (+3,+4). (Here and in what follows, we use
the shorthand notation (+1,+2) for eigenvalues (λ+1, λ+2), and similarly for the µ

eigenvalues.) The single vortex in panel (a) and the counter-rotating toroidal vortex
pair in panel (b) are as anticipated, but the nested structure in panel (c) is quite
unexpected. The vortices above and below the equator rotate in the same direction
and one may note the small free vortex rotating in the opposite direction that appears
straddling the bisector. All streamline patterns alternate in flow direction and decrease
in magnitude as one descends to the apex. For example, the maximum absolute value
of the streamfunction for the three topmost vortices in figure 5(a) is 0.154, 1.42 ×
10−5, and 1.26 × 10−9, respectively.

Flows in the wedge and symmetric double-cone geometries have similar streamline
patterns. In particular, the third and presumably higher modes have structures
unanticipated by earlier authors. Wedge streamline patterns computed for each nested
vortex mode (+1,+2), (−1,−2) and (+3,+4) at 2θ0 = 60◦ are plotted in figure 6 to
compare with the double-cone results for the same modes at �θ = 60◦ in figure 5.
Note that in both cases a free vortex appears in panel (c) and that the radial separatrix
between nested vortices for this mode is not a plane for the wedge nor a conical
surface for the double cone.

Figure 6 demonstrates that, for the second and higher odd modes, the dividing
streamlines are very different from arcs r = const. For the wedge bounded by θ = ±θ0,
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(b)(a)

(c)

Figure 5. Nested vortices for a symmetric opening of the cones at �θ =60◦ for the three
lowest modes: (a) mode (+1,+2), (b) mode (−1, −2), and (c) mode (+3,+4).

the streamfunction ψ = Re[rλ+1f (θ)], where

f =
cos(λ + 1)θ

cos(λ + 1)θ0

− cos(λ − 1)θ

cos(λ − 1)θ0

, λ sin 2θ0 + sin 2λθ0 = 0, (18)

vanishes whenever Im(λ) ln r + arg f (θ) = (n + 1/2)π for some integer n. On radial
lines θ = const., ψ = 0 at values of r in geometric progression, as is well-known, but
on arcs r = const., multiple solutions of ψ = 0 occur whenever there are angles θk , θk+1

such that f (θk)/f (θk+1) is real and negative and then their positioning depends on the
chosen value of r . Similar observations apply to the second and higher even modes,
which also have the fixed dividing streamline θ =0. The limit θ0 = 0 is illustrated by
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(a) (b)

(c)

Figure 6. Moffatt eddies in a wedge at 2θ0 = 60◦ for (a) the (+1,+2) mode, (b) the (−1, −2)
mode, and (c) the (+3,+4) mode. Note the striking similarity with the eddies in figure 5 for a
symmetric opening �θ = 60◦ about the equator.

the exponentially growing channel eigenfunctions,

ψ = Re

[(
x sin λx

sin x
− cos λx

cos x

)
eλy

]
, (|x| < 1, y > 0), 2λ + sin 2λ= 0, (19)

and their odd counterparts.
We explore the topology, evolution and extinction of the free vortex with increasing

opening angle in figure 7 by magnifying a ±5◦ segment of the flow centred on the
toroidal vortex whose centre circle moves radially outward with increasing �θ . The
topology in panel (a) for �θ = 30◦ consists of the vortex straddling the equator with
clockwise circulation, bounded by obliquely impinging streamsurfaces forming free
stagnation circles to the north and south. The pattern stretches polewards through
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(a) (d)

(b) (e)

(c) (f)

Figure 7. Evolution and disappearance of the free vortex for a symmetric opening of the cones;
(a) �θ = 30◦, (b) �θ = 60◦, (c) �θ = 82.5◦, (d) �θ = 87.0◦, (e) �θ = 90.0◦, (f ) �θ = 150◦.
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frame (b) at �θ = 60◦ and then shrinks through frame (c) at �θ = 82.5◦ and frame
(d) at �θ = 87◦, with extinction before frame (e) where �θ = 90◦. This leaves only a
single free stagnation circle on the equator in frame (f ) at �θ = 150◦.

3.2. Asymmetric flow region

At small values of θ2 −θ1 =�θ , the eigenvalues become large and thus the asymptotic
estimates given by Gradshteyn & Ryzhik (1994, section 8.721), for µθ � 1, can be used.
Since scale factors cancel in the 4 × 4 determinant set equal to zero, the leading-order
terms in (9) yield

∣∣∣∣∣∣∣∣∣

cos[(µ + 1)θ1 + π/4] . . . − sin[(µ + 1)θ1 + π/4] . . .

cos[(µ + 1)θ2 + π/4] . . . − sin[(µ + 1)θ2 + π/4] . . .

(µ + 1) sin[(µ + 1)θ1 + π/4] . . . (µ + 1) cos[(µ + 1)θ1 + π/4] . . .

(µ + 1) sin[(µ + 1)θ2 + π/4] . . . (µ + 1) cos[(µ + 1)θ2 + π/4] . . .

∣∣∣∣∣∣∣∣∣
∼ 0, (20)

in which the second and fourth columns are obtained from the first and third
respectively by replacing µ + 1 by µ − 1. The optimal expansion is in terms of six
products of 2 × 2 minors, with the first and third, second and fourth columns paired
to keep µ+1 and µ−1 separate. Remarkably, the resulting six terms are independent
of θ1 + θ2 and pair off to give

−[(µ − 1)2 + (µ + 1)2] sin[(µ + 1)�θ] sin[(µ − 1)�θ]

+ (µ2 − 1) {2 − 2 cos[(µ + 1)�θ] cos[(µ − 1)�θ]}
= −2µ2 cos[2�θ] + 2 cos[2µ�θ] + 2(µ2 − 1)

= 4µ2 sin2(�θ) − 4 sin2(µ�θ) ∼ 0. (21)

In the limit �θ → 0 and µ → ∞ this equation becomes exact, factoring into the pair
of equations sin(µ�θ) ± µ sin �θ = 0. Identifying z = µ�θ again gives equation (2),
showing that the wedge, symmetric double-cone (17) and asymmetric double-cone
geometries all have the same limits as �θ → 0.

Despite this odd/even split in the limit of zero angle, the labelling adopted in the
symmetric case is inappropriate here. Seeking a corresponding overall count, the left-
hand bifurcations are labelled by ascending values of m and the associated eigenvalues
by (µm1, µm2). When the value of θ2 yields a symmetric region (θ1 + θ2 = 180◦), we
then have (µm1, µm2) = (µ+

m, µ+
m+1) or (µ−

m−1, µ
−
m), according to whether m is odd or

even (cf. figure 4).
The eigenvalue distribution for θ1 = 1◦ is given in figure 8. Where complex roots

are obtained we plot only the real part as indicated. The solid dots at �θ = 0 indicate
the limits mentioned above. At θ1 = 1◦ the eigenvalue distributions are similar to
those for a conical trench (figure 15) and of Weidman & Calmidi (1999) for the
free-surface cone in the sense that, for m > 2 for increasing θ2, the following sequence
similar to that for flow in a wedge (cf. figure 2) is observed: region (i) of nested
vortices, region (ii) without vortices, region (iii) exhibiting a solitary vortex, and
region (iv) with no vortices up to the highest wedge or cone angle possible. Streamline
patterns computed in these four regions, marked by the filled dots in figure 8 are
presented in figure 9. The solitary vortex for �θ = 149◦ in figure 9(c) emanates
from the corner, is attached to the lower wall, and does not repeat itself at larger
radii.
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Figure 8 indicates two interesting contrasts. Whereas the conical trench (figure 15)
has region (ii) symmetric about 2θ0 = 180◦, it is suggested, and backed by an eigenplot
for θ1 = 0.001◦, that the onset of region (ii) as θ1 → 0◦ (when the upper cone becomes
an infinitesimally thin needle) occurs at �θ = 90◦. All modes simultaneously become
real in this limit (see figure 12a). The case θ1 = 90◦, θ2 → 180◦ exhibits similar features.
Secondly, regions (iii) and (iv) appear but are absent from the symmetric case
(figure 4). We rationalize this by observing that a symmetric opening about the
equator mimics a wedge of angle <180◦, whereas an asymmetric opening with angle
>90◦, and thus θ1/θ2 necessarily small, mimics a wedge of angle >180◦, which allows
flow to come from one direction and bifurcate at the boundary, hence giving flow
structures seen only in regions (iii) and (iv).

The evolution of the eigenvalue diagrams with increasing upper cone angles θ1 = 1◦,
10◦, 30◦, 45◦, 60◦, 90◦ and corresponding max�θ = 179◦, 170◦, 150◦, 135◦, 120◦, 90◦

are displayed in figure 10. Again, the solid dots on the ordinate are the limiting values
obtained from equation (2). In all cases, only vortices exist if �θ < 90◦, implying
that flow cannot go into and out of the conical wedge. It is seen that successive
regions shrink and disappear with increasing θ1 as follows: first region (iv) shrinks
and disappears, next region (iii) shrinks, and then region (ii) shrinks until at θ1 = 90◦

only region (i) of nested vortices remains for all mode numbers m. Actually, using the
symmetry inherent in the problem, it can be inferred from the eigenplot for θ1 = 0.001◦

that regions (iii) and (iv) in figure 10(e) do not disappear; rather they exist in an
infinitesimally thin domain adjacent to �θ = 120◦, where the lower cone becomes a
needle.

An idea of the complicated asymmetric streamline patterns observed is given in
figure 11 which shows the first three modes for θ1 = 10◦ and θ2 = 135◦ corresponding
to �θ = 125◦ shown as solid dots in figure 10(b).

The first non-trivial eigenvalue pair m =1 is of primary interest owing to its
dominance over the higher eigenvalues. For each value of θ1 there is a critical
value (θ2)c, listed in table 1, marking the transition from region (i) to region (ii) at
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(a) (b)

(c) (d)

Figure 9. Streamline patterns computed for θ1 = 1◦ at the solid points in figure 8; (a) region
(i) of nested vortices for the Re(µ1, µ2) eigenvalue at �θ = 44◦, (b) first region (ii) void of
vortices for the µ12 eigenvalue at �θ =119◦, (c) region (iii) of a single vortex anchored to the
origin for the Re(µ2, µ3) eigenvalue at �θ = 149◦, and (d) second region (iv) void of
vortices for µ12 eigenvalue at �θ = 169◦.
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Figure 10. Eigenvalue spectra for (a) θ1 = 1◦, (b) θ1 = 10◦, (c) θ1 = 30◦, (d) θ1 = 45◦,
(e) θ1 = 60◦, (f ) θ1 = 90◦. The solid dots in (b) correspond to points where streamline patterns
are plotted in figure 11.

which nested vortices disappear. We plot the variation of this and the m =2, 3
and 4 critical values in figure 12(a). Owing to the north/south-pole symmetry, each
numerically computed critical value can be used to generate an additional critical
value. Specifically, for every (θ2)c1

at (θ1)1 in the northern hemisphere, there exists the
additional critical angle

(θ2)c2
→ 180◦ − (θ1)1 @ (θ1)2 → 180◦ − (θ2)c1

in the southern hemisphere. These extra solution values generated from the numerical
data listed in table 1, and similar data for m =2, 3, 4, are included in figure 12(a). Note
that for all upper cone angles 0 <θ1 < 90◦ the critical lower cone angles are restricted to
90◦ < (θ2)c < 180◦. We discovered that a more informative presentation of these data is
given by plotting the critical opening angle (�θ)c against the angle θb bisecting the fluid
domain as in figure 12(b). This format emphasizes that nested vortices exist whenever
�θ < 90◦, as indicated by figures 4, 8 and 10, and thus the lower part of the bounding
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(a) (b) (c)

Figure 11. Asymmetric streamline patterns computed for θ1 = 10◦ and θ2 = 135◦ at the solid
points in figure 10 (b) for (a) m= 1 (b) m= 2 and (c) m= 3.

θ1 (θ2)c (�θ )c θb

0.001 92.12 92.12 46.06
0.01 94.99 94.98 47.50
0.1 99.77 99.67 49.94
1.0 108.97 107.97 54.99
5.0 122.02 117.02 63.51

10.0 131.31 121.31 70.66
20.0 144.67 124.67 82.34
27.39 152.61 125.22 90.00
30.0 155.16 125.16 92.58
45.0 167.56 122.56 106.28
60.0 175.85 115.85 117.93
70.0 178.81 108.81 124.41
85.00 179.99 94.99 132.50
87.87 179.999 92.13 133.93

Table 1. Calculated m = 1 critical angles (θ2)c , critical opening angles (�θ )c , and critical
wedge bisection angles θb . All angles are in degrees.

triangle is omitted. The restrictions θ1 > 0, (θ2)c < 180◦ imply that the envelope of
critical angles (�θ)c is given by the dashed lines intersecting at (�θ)c =180◦, θb = 90◦.
It may be noted that the maximum critical angles (�θ)c, plotted as open circles in
figure 12(b), are found in the class of symmetric flows; in other words, symmetric
openings support the largest opening angles for which a nested vortex structure exists.
For any given θb, the complex modes sequentially disappear as �θ increases. In the
limit �θ → 180◦ the cone pair reduces to an infinitely long, infinitesmally thin needle.
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Figure 12. Critical angles for transition from region (i) of nested vortices to region (ii) of no
vortices; (a) results plotted as (θ2)c for fixed values of θ1, (b) results plotted as (�θ)c for fixed
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Figure 13. Comparison of (a) the sphere-on-a-wall eddy structure calculated by Davis &
O’Neill (1977a) (reprinted with permission) with (b) the m= 1 cone-on-a-wall calculation at
θ1 = 60◦ and θ2 = 90◦ of the present investigation.

Figure 13 compares an asymmetric similarity streamline pattern between cones at
θ1 = 60◦ and θ2 = 90◦ that models, as pointed out in the introduction (see figure 1),
the nested vortex structure of Davis & O’Neill (1977a) for axisymmetric stagnation
flow normally impinging a sphere resting on a horizontal wall. The choice θ1 = 60◦ is
simply a representative value of the varying angle of the sphere up to the separation
streamline; any value in a neighbourhood (±10◦) of 60◦ exhibits a similar toroidal
vortex structure.

For comparison with figure 7, we show in figure 14 the morphological evolution
of the free vortex for m =3 for an asymmetric opening of the wedge, starting from
the symmetric streamline configuration in figure 14(a) at �θ =60◦ corresponding to
θ1 = 60◦ and θ2 = 120◦. Subsequent frames for fixed θ1 exhibit the streamline patterns
found by increasing θ2. As in figure 7, only a ±5◦ window of the flow centred
on the evolving vortex is presented and the rotation of the diagonal line θ = θb is
geometrically accurate. The symmetric distribution of the two free stagnation circles
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(a) (d)

(b) (e)

(c) ( f )

Figure 14. Evolution and disappearance of the free vortex for an asymmetric opening of
the cones at θ1 = 60◦; (a) θ2 = 120◦, (b) θ2 = 125◦, (c) θ2 = 130◦, (d) θ2 = 135◦, (e) θ2 = 140◦,
(f ) θ2 = 145◦.

defined on the same streamsurface in figure 14(a) immediately breaks into stagnation
circles defined on different streamsurfaces in figure 14(b) for which θ2 = 125◦. The free
vortex drifts off the centreline away from the cone being opened. Both stagnation
circles still exist at θ2 = 130◦ in figure 14(c), but the upper stagnation circle and the
free vortex simultaneously disappear somewhere before θ2 = 135◦ in figure 14(d). The
lower stagnation circle is maintained up to θ2 = 145◦ in figure 14(f ) and beyond.
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4. Single cone (revisited)
When dealing with flow in a cone, the Q′

µ functions, singular along the axis of
symmetry ξ = 1, are omitted, in lieu of the conditions at θ1 in (8), and the eigenvalue
equation (9) reduces to ∣∣∣∣∣

P ′
µ+1/2(ξ2) P ′

µ−3/2(ξ2)

P ′′
µ+1/2(ξ2) P ′′

µ−3/2(ξ2)

∣∣∣∣∣ = 0. (22)

Figure 15 displays eigenvalues on curves that closely resemble the ‘−’ curves in
figure 2. Counterparts to the ‘+’ curves (odd modes) cannot exist because flow across
the cone axis is precluded. Again, the asymptotic formulae given by Gradshteyn &
Ryzhik (1994, section 8.721) can be used to estimate the limit behaviour of z = 2θ0µ

for the conical trench as 2θ0 → 0 from the equation

cos z + z =0. (23)

However, there is an important contrast between �θ , the difference between two
non-zero angles, and θ0 approaching 0 because Pµ becomes singular, in general, in the
latter case. Likewise, the asymptotic analysis of Liu & Joseph requires µθ0 � 1. So,
unlike the limit equation (2) for the double-cone problem, the result (23) is not exact
and slight discrepancies between the computed and asymptotic values can be seen in
figure 15. Consistent with the above limitation, the disparity between asymptotic and
computed limit values decreases with increasing mode number: the differences are
1.98%, 0.65% and 0.32% for the (−1,−2), (−3,−4) and (−5,−6) modes, respectively,
with the asymptotic estimates always larger than the computed values.

Figure 16 displays streamlines for the lowest mode at 2θ0 = 60◦ to compare with
the streamline structure given by Liu & Joseph (their figure 1).

Our improved accuracy over their calculations can be seen for the eigenvalues listed
in table 2(a) for 2θ0 = 20◦, 60◦, in table 2(b) for 2θ0 = 120◦, 160◦ and in table 2(c) for
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Figure 16. Streamline patterns for the (−1, −2) mode at 2θ0 = 60◦ comparing (a) the original
figure 1 of Liu & Joseph (1978) (reprinted with permission) with (b) the present computation.

Figure 17. Conical-trench streamlines for mode (−3, −4) with apex angle 2θ0 = 60◦

a region (ii) value 2θ0 = 162◦. The critical angle for disppearance of nested vortices in
the lowest mode (−1,−2) is computed to be (θ0)c = 80.86◦, about 5◦ higher than the
value (θ0)c = 76.95◦ reported by Liu & Joseph (1978). Note, however, that our value
is in accord with the critical angle 80.9◦ reported by Wakiya (1976).

In conclusion to this section, we note in figure 17 a striking feature of the nested
vortices for the second (−3, −4) mode. All toroidal vortices touch both the bounding
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(a) n Complex roots µn(2θ0 = 20◦) n Complex roots µn(2θ0 = 60◦)

1 25.601121672175 + 8.347241407096i 1 8.564202799010 + 2.613929731913i
2 44.090488976125 + 9.835407620211i 2 14.714736394992 + 3.113756241171i
3 62.311361125687 + 10.798240478083i 3 20.783197116510 + 3.435896144836i
4 80.440526902464 + 11.515317446705i 4 26.823413077142 + 3.675469476171i
5 98.526280908475 + 12.087714506945i 5 32.850196720932 + 3.866569068307i
6 116.587765415270 + 12.564355185813i 6 38.869446025567 + 4.025633504036i
7 134.634203492964 + 12.972814846959i 7 44.884012254987 + 4.161908430137i
8 152.670624470004 + 13.330213887297i 8 50.895454285179 + 4.281126375624i
9 170.700018540100 + 13.647926204919i 9 56.904700937639 + 4.387092276166i

10 188.724281409478 + 13.933898357019i 10 62.912342123509 + 4.482462791745i
11 206.744676169908 + 14.193903527300i 11 68.918771503280 + 4.569167063693i
12 224.762078508565 + 14.432269079320i 12 74.924262365334 + 4.648650574494i
13 242.777115588450 + 14.652322747119i 13 80.929010670577 + 4.722024578015i
14 260.790248928666 + 14.856678829017i 14 86.933160776725 + 4.790161884856i

(b) n Complex roots µn(2θ0 = 120◦) n Complex roots µn(2θ0 = 160◦)

1 4.340760366189 + 0.959888954427i 1 3.317004981782 + 0.161027196240i
2 7.392068590616 + 1.219392026851i 2 5.581939393961 + 0.449383155228i
3 10.416357056915 + 1.383341774381i 3 7.839775468674 + 0.587438663882i
4 13.430972639920 + 1.504415252673i 4 10.094834614319 + 0.683958582031i
5 16.440872106589 + 1.600660656411i 5 12.348442801215 + 0.758971056598i
6 19.448078070582 + 1.680614723919i 6 14.601175620728 + 0.820555831985i
7 22.453586314462 + 1.749028710927i 7 16.853331778116 + 0.872884240719i
8 25.457949151056 + 1.808829461281i 8 19.105084490006 + 0.918418263852i
9 28.461499558355 + 1.861951240471i 9 21.356542205627 + 0.958741575236i

10 31.464451115407 + 1.909740445970i 10 23.607776775146 + 0.994936566448i
11 34.466947557995 + 1.953172564427i 11 25.858837926943 + 1.027777323898i
12 37.469089406887 + 1.992977263917i 12 28.109761300917 + 1.057837340000i
13 40.470949208214 + 2.029714747010i 13 30.360573180679 + 1.085553712674i
14 43.472580712861 + 2.063824544577i 14 32.611293418570 + 1.111267441113i

(c) n Complex roots µn(2θ0 = 162◦)

1 3.215514472031 + 0 i
2 3.345382996720 + 0 i
3 5.515900473320 + 0.395014239173i
4 7.745133803130 + 0.536178915705i
5 9.971919521537 + 0.633092385233i
6 12.197417334119 + 0.707917365598i
7 14.422133149018 + 0.769150236126i
8 16.646330950008 + 0.821083498826i
9 18.870164619328 + 0.866221024583i

10 21.093730957655 + 0.906161834166i
11 23.317094368558 + 0.941993577712i
12 25.540299593652 + 0.974491491472i
13 27.763378805747 + 1.004228511906i
14 29.986355802133 + 1.031640506340i
15 32.209248605147 + 1.057067027991i

Table 2. Fourteen first-quadrant roots of equation (22) for (a) 2θ0 = 20◦, 60◦, (b) 120◦, 160◦

and (c) 162◦. When 2θ0 = 161.72◦ the first root becomes real-valued.

cone and the central axis, a feature not found in either the wedge or double-cone
geometries. The same holds true for the (−5, −6) and higher modes. Thus, for all
conical trench modes higher than the fundamental, internal separatrices pass obliquely
from the outer wall to the cone axis and are never conical.
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5. Summary and conclusion
The Stokes flow bounded by two concentric coaxial cones of polar angles θ2 > θ1

with a common vertex allows, for the first time, consideration of the nested vortex
structure in an asymmetric double-cone geometry. Our investigation reveals four flow
structures, depending on the cone angles: (i) a region of nested vortices, (ii) a first
region void of vortices, (iii) a region with only a solitary vortex pinned to the corner,
and (iv) a second region void of vortices. Analogous flow structures exist in a wedge,
but the streamline patterns in the asymmetric geometry are more intricate, especially
in the higher modes. The eigenvalue plots, when scaled vertically to address the small
opening angle limits, 2θ0 for the wedge and �θ for the double cone, have the same
limits for each mode as their opening angles tend to zero.

In the symmetric double-cone configuration regions (iii) and (iv) are absent. This
can be attributed to the fact that a symmetric opening about the equator is similar to
the opening of a wedge from 0◦ to 180◦ and this is confirmed by the striking similarity
in the flow structures for the two cases, even though the vortices are toroidal in the
former case and planar in the latter. We have shown that the asymptotic distribution
of eigenvalues is described by the same Moffatt (1964) equation for both even and
odd flow structures in these two flows.

An interesting feature of the higher mode structures in the double-cone, single-
cone, and wedge configurations is that internal separatrices in a section of the flow
exhibit curvature. Mathematical analysis for the simplest wedge geometry shows that,
beginning from the second odd mode, the separatrices between vortices are indeed
wiggly. Another feature of interest in the streamline patterns for the second odd
(+3, +4) mode for the wedge and symmetric double-cone configurations is the
appearance of a free central vortex sandwiched between larger wall-bounded vortices.
On opening the two bounding cones beyond approximately 87◦ the free vortex
collapses into a free stagnation circle at the equator.

Though the second mode is typically O(10−3) weaker than the fundamental, it can
appear naturally in a properly devised experiment. Consider a sphere with a symmetric
equatorial opening, filled with silicone oil seeded with tiny polystryrene spheres and
with density matching that of water, placed inside a cylinder, with sphere polar axis
and cylinder axis aligned. Water forced through a porous annular section of the
cylinder centred on the sphere would impinge on the sphere as a local axisymmetric
radial stagnation flow and leave the cylinder through opposing ends. The symmetric
external forcing of the immiscible oil in the axisymmetric wedge of the sphere would
induce a nested symmetric (−1, −2) mode vortex structure of the kind shown in
figure 5(b). Since there is no forcing by the fundamental mode, the outermost vortex
pair would be readily visible and, using long-time-exposure photography following
Taneda (1979), the second vortex pair should be visible as well.

While the symmetrically opening double cone mimics a wedge opening to 180◦,
asymmetrically opening cones with opening angles greater than 90◦ are akin to a
wedge with an opening angle greater than 180◦ with eigenvalues lying in regions (iii)
and (iv) where nested vortices are absent. Following the evolution of the double-cone
eigenplots with increasing values of upper cone angle θ1 suggests that regions (iii) and
(iv) disappear when θ1 � 60◦. However, based on symmetry considerations, it can be
shown that these regions do exist for �θ > 90◦ in a tiny region adjacent to θ2 = 180◦

where the lower cone becomes a needle.
New computations correcting the results of Liu & Joseph (1978) for Stokes flow in

a conical trench are presented. We find that the critical value for disappearance of the
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nested vortex structure in the lowest mode changes from θ0 = 76.95◦ to θ0 = 80.86◦,
and thus the region of existence of nested vortices is larger than anticipated by those
authors. Our computation for the critical angle is in agreement with the value 80.9◦

reported by Wakiya (1976). In this geometry, the internal separatrices between the
toroidal vortices, for all modes above the fundamental, traverse obliquely from the
cone wall to the cone axis.

The final manuscript benefits from comments and suggestions provided by three
referees and the editor. In particular, we are indebted to a referee who pointed
out an important reference missing from our bibliography. The lead author greatly
appreciates the support extended by Tata Research Development and Design Centre
through its director, Professor Mathai Joseph.
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